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Abstract 

Community analysis attracts considerable interest from multiple discipline do-

mains such as sociology, computer science, and physics. Previously, the macro-level 

community detection and micro-level pairwise influence between users were studied 

separately. In this paper, we try to give a systematical investigation of the two prob-

lems together. In particular, we formalize the social network in a factor graph model 

and employ a learning algorithm to estimate the pairwise social influence between 

nodes. Representative user finding and community structure discovery are then at-

tacked based on the learned social influences. Our experimental results on a real da-

taset demonstrate the effectiveness and efficiency of the proposed methods. 

Keyword: social network, community analysis, factor graph, social influence, repre-

sentative user 

1 Introduction 

With the rapid development of web-based social applications and media such as Facebook, Twitter, 

and Flickr, community analysis in social networks has attracted considerable interest from many 

different domains. Community analysis in the complex social networks includes many challenging 

tasks such as social influence modeling, community structure discovery, and representative user 

finding [8]. 

Previously, quite a few methods [2] have been proposed for discovering community struc-

tures, also known as modularity property of a network [4], in the sense that nodes in the network 

are partitioned into groups such that there is a higher density of edges within groups than between 

them [10], but seldom study the other tasks, such as representative user finding and social influ-

ence modeling. Social influence is a complex and subtle force that governs the dynamics of all 

social networks. Learning the social influence can help understand the mechanisms by which 

communities emerge and change in the complex social networks. For example, a few influential 

users and their followers naturally form a community. However, previously, the different commu-

nity analysis tasks, such as representative user finding and community structure discovery, were 

usually studied separately. In addition, most existing methods have focused on identifying the 

communities using heuristics [9]. For example Newman et al. [4] propose an algorithm based on 

greedy optimization of the quantity of modularity and Clauset et al. [1] extend the algorithm to 

scale it up to large-scale networks. However, the methods only consider the network structure and 

ignore the content information associated with each node. If one further wants to incorporate the 



content information, he has to change the definition of modularity and accordingly change the 

heuristic rules for greedy optimization. 

In this paper, we conduct a systematical investigation of the community analysis problem. In 

particular, we formally formulate the social network in a factor graph model. The model is general 

and flexible to adapt to different community analysis tasks. Two community analysis tasks, i.e., 

representative user finding and community structure discovery, are addressed using two instantia-

tions of the graph model. The fundamental model and the learning algorithm for the instantiations 

are identical for different analysis tasks. The only difference lies in the definition of the factor 

functions for the two tasks. We evaluate the model on two different real datasets, i.e., a coauthor 

network and a social network from Digg.com. Experimental results demonstrate the effectiveness 

of the proposed method. 

The rest of the paper is organized as follows: Section 2 and Section 3 formulate the two 

problems and explain the proposed approaches. Section 4 presents experimental results that vali-

date our methodology. Finally, Section 5 concludes and discusses future work. 

2 Representative User Finding 

We first study the problem of representative user finding, which is motivated by the fact that many 

users' behaviors are influenced by another user [7, 10]. Typically, in a social network, some repre-

sentative users (or influential users) may dominate the other users' behaviors in a community. For 

example, movie stars' behaviors may easily influence their fans. In this section, we present a factor 

graph model to formalize this problem and introduce how to solve the model using a loopy 

max-sum algorithm. 

Problem Definition.  The goal of representative user finding is to find a pairwise representa-

tiveness on each edge in the input social network, and estimate the most representative users for 

each user. Given a social network ( , )G V E , { }i iV v  is the set of nodes (users), , .{ }i j i jE e  

is a set of directional/undirectional edges representing reciprocal or parasocial relations between 

users, and ,i j  denotes the strength defined on each edge. We assume that each user 
iv  is asso-

ciated with a probabilistic distribution on topics { }ziz , the problem can be easily extended to find 

topic-level representative users. Formally, we introduce a set of variables { }z

i zy , each of whose 

components ranges from 1 to N  representing the user that 
iv  mostly trusts (or relies on) w.r.t. a 

specific topic z . 

Learning with Factor Graph.  In the representative user finding problem, two kinds of infor-

mation should be considered: 1) users are influenced by their friends; 2) users behaviors are finally 

determined by their own characteristics. Our main idea is to leverage the factor graph model [3] to 

solve this problem, in which the observation data are cohesive on both local attributes and rela-

tionships. 

Now we define the proposed model, which is an alternative TFG (Topical Factor Graph) 

model [7]. In [7], users' similarities are considered to quantify social influence between users, 

while in our model, the pair-wise relation delivers their representative degrees towards their com-

mon friends. The model has the following components: a set of observed variables 1{ }N

i iv   and a 

set of hidden vectors 1{ }N

i iy . For example, Figure 1 shows a simple example of how the factor 

graph is built upon a social network. The observed data consist of four nodes 1 4{ , , }v v , and the 

edges between the nodes indicate the four social relationships in the social network (see Figure 1a). 



The four nodes correspond to hidden vectors 
1 4{ , , } Y y y  (see Figure 1b). 
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Figure 1: Example of a factor graph for representative user finding 

There are three kinds of feature functions: node feature function, edge feature function, and 

regional feature function. Basically, users in a network would have preferences to follow other 

users behaviors or to act according to their own wills on a specific topic z . The former is charac-

terized by the edge feature function and the latter is characterized by the node feature function. In 

this problem, the feature functions are formally defined as follows. 

Node Feature Function.  ( )z

ig
i

y  is a function defined on node 
iv  specific to topic z , de-

scribing how likely the user 
iv  chooses a different user jv  (i.e., j i ) or himself as a repre-

sentative. It can be represented by factors shown in Figure 1c, and formally defined as follows. If 

the user choose his neighbor as his representative, then the node feature function is proportional to 

the topical similarity and the interaction strength between the two users by considering jz  and 

,i j . If he chooses self-representative, then his impact and trustiness should be significant (e.g., at 

least some other users also choose him as a representative user), and thus the node feature function 

sums up the topical similarity and the interaction strength between the user and those pointing to 

him. 

Edge Feature Function.  , ( , )z

i jf
i j

y y  is a feature function defined on the edge ,i je  of the input 

network specific to topic z  to capture dependencies between friend pairs 
iv  and jv , and bias 

the user 
iv  to be influenced by the user that also influences one of his/her friends jv , following 

the theory of social homophily. Formally, for each edge ,i je , if two neighboring users 
iv  and 

iv  

choose the same representative ( z z

i jy y ), the edge feature function takes a larger value than if 

two neighboring users choose different representatives, where the value is denoted as bias coeffi-

cient. Note that if the edge ,i je  is directional, then the suggestion is valid only along the direction 

of the edge, i.e., 
iv  may suggest representatives for jv , but the converse is not. In Figure 1d, 5 

dependencies of homophily are defined for 3 directional edges and a bi-directional edge respec-

tively. 

Regional Feature Function.  ( ) { }( )z

kh I i iy  is a feature function defined on the set of neighboring 

nodes of 
iv  and itself w.r.t. topic z  to avoid “leaders without followers” in the learned model. 

More specifically, if a representative node 
kv  is the representative of himself on topic z , then it 



must be a representative of at least another node 
iv  on the same topic z . If the predicted 

1{ }N

i iy  

result in an invalid configuration, then the regional feature function will take 0 as an punishment 

for 
kv 's behavior, otherwise it takes 1 to approval it. In Figure 1e, we subsequently append 4 fac-

tors representing 4 regional factors on 4 nodes and their neighbors. 

In summary, we can define an objective function by considering all the feature functions 

based on the factor graph theory [3]. Solving such a factor graph with cycles is often intractable. 

We use a loopy max-sum algorithm to solve the maximization problem, where message variables 
z

ijkp  and z

ijkc  are defined on nodes, edges or triangles (three neighboring users) in a social net-

work. One advantage of max-sum algorithm is that all message variables usually have nice expla-

nations as real social interaction processes among users. For example, z

ijkp  represent how likely 

user 
iv  persuades jv  to take 

kv  as his representative on topic z , and 
z

ijkc  represents how likely 

user jv  compliances the suggestion from 
iv  that he considers 

kv  as his representative on topic z . 

Note that if an edge ,i je  is directed, then the suggestion messages are defined along the di-

rection. For example, in Figure 2(a), three connected users 
1v , 

2v  and 
3v  form a triangle struc-

ture, but only 
1,2,3

zp  is valid for , ,

z

i j kp , and the arc can be simply understood as 
iv  recommend 

to 
kv  the user jv . In Figure 2(b), two edges are directed, and 

1,2,3

zp  (the orange arc), and 
2,1,3

zp  

(the green arc) are valid messages for , ,

z

i j kp . In Figure 2(c), where only 
1v  and 

3v  are con-

nected by a directed edge, 
1,3,2

zp  (the blue arc), 
1,2,3

zp , and 
2,1,3

zp  are valid messages for , ,

z

i j kp . 

That is, influences can only be propagated along the specific direction if it is given. 

 

Figure 2: Example of triangles with directed edges 

Based on results of the proposed factor graph model, we can calculate the representative de-

gree of each node, which is proportional to the optimized probability ( )z

ip y j , and a sigmoid 

function converts each value into the ranges of [0,1]. And accordingly self-representative degree 

of person 
iv  is proportional to the probability ( )z

ip y i . 

3 Community Discovery 

Many different community analysis tasks can be also solved using the proposed factor graph mod-

el. Here we introduce how to solve the community discovery problem using the factor graph. The 

goal of community discovery is to partition the social network into groups such that there is a 

higher density of edges within groups than between them [10]. The problem is different, but 

closely relevant to, the representative user finding problem. For example, a representative user and 

his/her followers naturally form a community. Based on this intuition, we again formalize the 
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community discovery problem in the factor graph model. 

Problem Definition the objective of community discovery is to find a community 
iy  from 

{1, , }C  for each person 
iv , which represents the community that 

iv  belongs to, such that the 

preservation of structure is maximized, or the modularity Q  of the community is maximized. 

Modularity is a description on the structure of the community, which indicates the significance of 

the community structure. The higher value of modularity corresponds to a better division of a 

network [1]. Intuitively tightly associated pairs in the social network are more probable to be in 

close proximity in the discovered community structure. To model the community discovery prob-

lem using factor graph, we introduce a virtual node 
cu  for each community c . 

Learning with Factor Graph.  The chief concern in this problem is the modularity, a represen-

tation of the modularity Q  is defined as the sum of the edge modularity ,i jq  on ,i je :  

,e p( 2x )/i j i jk k m  , where 
ik  is the sum of weights of out-edges of node 

iv , i.e., 

( ) ,i j O i i jk    and m  is the sum of weights of all edges in the network, i.e., , ,i j i jm   . 

Therefore, we respectively define node features and edge features to capture this intuition, and 

then a factor graph model is constructed based on the factors. Figure 3 shows an example of a 

factor graph. Similar to the factor graph model for the representative user finding problem, the 

observed data consist of four nodes 
1 4{ , , }v v , which have corresponding hidden vectors 

1 4{ , , }Y y y  . The difference lies in that we introduce 2C   latent variables for communities, 

and accordingly define different feature functions for communities. 
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Figure 3: Example of a factor graph for community discovery 

There are two kinds of feature functions: node feature function and edge feature function. 

Edge Feature Function.  , ( , )i j i jf y y  is a feature function defined on the edge ,i je  of the input 

network, representing how likely two connected nodes choose the same community node for each 

edge, where the bias coefficient of the objective function in the representative user finding is not 

constant, but dependent on the strength of the edge and the out-degree of the persons, which is 

equivalent to the definition of modularity ,i jq  on edges. Formally, if both neighboring nodes 
iv  

and jv  choose the same community ( i jy y ), the factor takes the value of its local modularity; 

otherwise, it takes the value 1. 

Node Feature Function.  ( )i ig y  is a feature function defined on node 
iv , describing how like-

ly a node iv  takes cu  as his/her social community. Although the product of all the edge feature 

factors ,i jf  is sufficient to guarantee the structure of community achieves the maximum signi-

ficance, and a message passing algorithm could be applied to solve the objective function, but 

since all the communities are identical to each other, the algorithm cannot make a decision for 



each individual. Here we simply achieve this by considering that the communities are represented 

by the tendency of his/her neighbors' choosing communities in majority. 

Again, we can define an objective function by combining all the feature functions and solve 

it using a message passing algorithm. Specifically, two types of variables 
ijcp  and 

ijcc  are de-

fined on edges in a social network, and explanations given to each type of variables are analogous 

to those for representative user discovery. Here, 
ijcp  implies how likely user 

iv  suggests 
jv  to 

take 
cu  as his community and 

ijcc  implies how likely user 
jv  compliances the suggestion from 

iv  that he considers 
cu  as his community. We can also similarly define the representative degree 

of a person 
iv  to a community c  based on the learned variables 

ijcp  and 
ijcc . 

4 Experiments 

In this section, we present the evaluation of the results, and demonstrate the model effectiveness 

using a case study. The proposed unified framework based on the factor graph model is imple-

mented and publicly available for downloading as well as other related data sets and materials
1
. 

We extract a coauthor network from an academic search system Arnetminer.org 

(http://arnetminer.org) [6]. The data set consists of 1,050,021 authors and 3,154,643 coauthor rela-

tions. For representative user finding, topic distributions of authors are discovered using a statis-

tical topic modeling approach, Author-Conference-Topic (ACT) model [6]. A sample of such top-

ics is listed on Arnetminer.
2
 We will show the result of the representative authors found on seven 

topics in our experiments. Moreover, for each topic, we extract a subset of the original network 

with nodes having the highest distribution on this topic. 

Results.  Table 1 lists 10 most representative persons on 7 different topics discovered by the 

proposed factor graph model on the coauthor network, and Table 2 lists 5 most representative per-

sons of each community discovered by community discovery method for these different topics. 

Here we set the number of communities as 5. 

We see that the persons who are mostly representative to the community are not necessarily 

the most “self-representative persons”. And there are some persons who are active in 2 or more 

communities, e.g., Prof. Jiawei Han and Dr. Xiaohua Hu in “Data Mining” network, Prof. Philip S. 

Yu in “Database System” network, etc. 

Table 1: 10 most self-representative persons on 7 different topics for coauthor network 

TYPE REPRESENTATIVE PERSONS 

Data Mining 
Jiawei Han, Jian Pei, Philip S. Yu, Ke Wang, Qiang Yang, Heikki Mannila, Wei Wang, Ea-

monn J. Keogh, Martin Ester, Ada Wai-Chee Fu 

Database 

System 

Gerhard Weikum, Michael Stonebraker, Michael J. Franklin, Divesh Srivastava, Jennifer 

Widom, Michael J. Carey, Richard T. Snodgrass, Beng Chin Ooi, Joseph M. Hellerstein, 

Philip A. Bernstein 

Information 

Retrieval 

Mounia Lalmas, Nicholas J. Belkin, Ophir Frieder, Alan F. Smeaton, Mark Sanderson, Ste-

phen E. Robertson, James P. Callan, Chris Buckley, Norbert Fuhr, Amanda Spink 

Web Service Jen-Yao Chung, Wil M. P. van der Aalst, Patrick C. K. Hung, Jun-Jang Jeng, Manfred Rei-

                                                             
1
 http://arnetminer.org/soinf 

2
 http://www.arnetminer.org/topicBrowser.do 



chert, Ying Li, Jian Wu, Schahram Dustdar, Jian Yang, Claude Godart 

Bayesian 

Networks 

Didier Dubois, Henri Prade, Philippe Smets, Serafin Moral, David Heckerman, Salem Ben-

ferhat, Lluis Godo, Daphne Koller, Luis M. de Campos, Finn Verner Jensen 

Semantic Web 
Steffen Staab, Stefan Decker, Dieter Fensel, Ian Horrocks, Enrico Motta, York Sure, Bijan 

Parsia, Carole A. Goble, Deborah L. McGuinness, Jeff Z. Pan 

Machine 

Learning 

Bernhard Scholkopf, Michael I. Jordan, Robert E. Schapire, Manfred K. Warmuth, Alex J. 

Smola, Yoram Singer, John Shawe-Taylor, Satinder P. Singh, Peter L. Bartlett, Yoav Freund 

Table 2: Five most representative persons of 5 communities on 4 different topics 

TYPE REPRESENTATIVE PERSONS 

Data Mining 

Christos Faloutsos Elaine P. M. de Sousa, Spiros Papadimitriou, Floriana Esposito, Longbing Cao 

Hongjun Lu, Wei Wang, Jiawei Han, Jeffrey Xu Yu, Xifeng Yan 

Philip S. Yu, Ke Wang, Jaideep Srivastava, Chengqi Zhang, Michail Vlachos 

Jiawei Han, Dimitrios Gunopulos, Jian Pei, Xifeng Yan, Xiaohua Hu 

Zheng Chen, Qiang Yang, Hua-Jun Zeng, Xiaohua Hu, Chengqi Zhang 

Database 

System 

Anthony K. H. Tung, Gao Cong, Limsoon Wong, Heng Tao Shen, Mong-Li Lee 

Christian S. Jensen, Kyu-Young Whang, Richard T. Snodgrass, Dieter Pfoser, Thomas Schwarz 

Philip S. Yu, Hector Garcia-Molina, S. Sudarshan, Philip Bohannon, Jennifer Widom 

C. Mohan, Beng Chin Ooi, Bruce G. Lindsay, Donald D. Chamberlin, Philip S. Yu 

Michael Stonebraker, Guy M. Lohman, Joseph M. Hellerstein, Kenneth A. Ross, Yuqing Wu 

Information 

Retrieval 

Michael A. Shepherd, Carolyn R. Watters, Edward A. Fox, Wensi Xi, Bernard J. Jansen 

Chris Buckley, James P. Callan, Djoerd Hiemstra, Wessel Kraaij, Amit Singhal 

Diane Kelly, C. J. van Rijsbergen, Mounia Lalmas, Nicholas J. Belkin, W. Bruce Croft 

Justin Zobel, Kareem Darwish, Nivio Ziviani, Martin Franz, Ian Soboroff 

Weiguo Fan, Edward A. Fox, Ming Luo, Joemon M. Jose, Micheline Hancock-Beaulieu 

Web Service 

Marlon Dumas, Liangzhao Zeng, Boualem Benatallah, Francisco Curbera, Wil M. P. van der Aalst 

Claude Godart, Olivier Perrin, Vincenzo D'Andrea, Florian Rosenberg, Nirmal Mukhi 

Wil M. P. van der Aalst, Remco M. Dijkman, Boualem Benatallah, David Edmond, Haifei Li 

Francisco Curbera, Athman Bouguettaya, Fabio Casati, Boualem Benatallah, Schahram Dustdar 

Haifei Li, Rama Akkiraju, Ying Huang, Frank Leymann, Jia Zhang 

For some other people, they may be willing to consider other persons as their representatives 

as much as (or even more than) to consider themselves. Each person can choose another person or 

themselves as their representatives according to different values of bias coefficient. A higher value 

will broaden the view of each person, and force them to rely on another person more than them-

selves. In our experiments, we find that with the value set as 1 (no bias), 64.1% of the persons 

choose themselves as the most representative node, while with the bias set as 2, only 8.0% of per-

sons remain to choose self-representative.  

Case Study.  We present a case study on the coauthor network with respect to topic “data min-

ing”. We discover the most self-represented person is Prof. Jiawei Han with self-representative 

degree 0.00158 (Cf. Figure 4). We plot six most self-represented persons (in red) together with 

persons who are mostly influenced by them (in black). The scores in red denote the 



self-representative degrees and the score on each edge denotes the pairwise representative degree. 

We find that the six self-represented persons are not easily to be influenced by the others, and 

specifically their representative degrees on others are mostly less than a half of their 

self-representative degrees. We can also see that some influential users may be also strongly in-

fluenced by the others. For example, Prof. Jiawei Han has a high representative degree (0.0064) on 

Dr. Jian Pei. While some influential users might be very independent, for example, Prof. Heikki 

Mannila is not associated with others. 

Thus we analyze the probability distribution of these top self-representative persons on 5 

communities [5], see Figure 5. All the persons contribute to two or more communities, e.g., Prof. 

Jiawei Han mostly contributes to the second and the fourth community, and Prof. Philip S. Yu de-

votes to the third community as well, however Prof. Heikki Mannila almost equally contributes to 

all the communities other than the third community. Nevertheless, we find that different persons 

have different preferences on communities. As most of the persons exhibit a relatively strong as-

sociation with the third community, the association between this community and Prof. Heikki 

Mannila appears weaker than others, and in turn he tends to cooperate with many other persons 

from the first and the fifth communities that have weaker connections with other 

self-representative persons, e.g., Prof. Ke Wang, Dr. Jian Pei and Prof. Jiawei Han. 
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Figure 4: Representative persons and their most represented persons discovered by our method 

 

Figure 5: Community distribution analysis for self-representative persons 



5 Conclusion and Future Work 

In this paper, we study the problem of social community analysis. We formally define the 

problem of social community analysis and propose a unified factor graph model. The model is 

very general and flexible. Based on different definitions of the factor functions, we can adapt the 

factor model to deal with the representative user finding and the community discovery subprob-

lems. Experimental results on two different genres of data sets demonstrate that the proposed ap-

proach can effectively find the representative users from social networks. Analysis also shows 

some interesting results. 

The general problem of social community analysis presents an interesting research direction 

for social network analysis. There are many potential future directions of this work. One interest-

ing issue is to further consider the other sub tasks, e.g., authoritative users finding, in the factor 

graph model. Another interesting problem is to incorporate some supervised information into the 

sampling process. For example, for community discovery, two users are restricted to be clustered 

into one group. It is also interesting to consider the temporal information for community analysis 

by leveraging a dynamic factor graph, and systematical comparison with existing method for 

community detection will be conducted in the future work. We are also studying how to integrate 

the topic detection task into the current factor graph model. Finally, to scale up to massive data, 

the iterative sum-product algorithm can be designed with a distributed learning algorithm. 
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